Sixth framework programme




Yüklə 302.2 Kb.
səhifə1/9
tarix29.04.2016
ölçüsü302.2 Kb.
  1   2   3   4   5   6   7   8   9


S
IXTH FRAMEWORK PROGRAMME

Project no.: PL012002
Project acronym: GMS application
Project title:
Generic Model Simulations (GMS) of spreading of marine pollutants in the Arctic environment during the 21st Century”
Specific Support Action
Priority D.1. Environmental Protection

D5. FINAL REPORT

Period covered: 1 August, 2005 to 31 July, 2006

Date of preparation: 1 September, 2006
Start date of project: 1 August, 2005 Duration: 12 months
Project coordinator name: Dr. Leonid P. Bobylev

Project coordinator organisation name: Scientific Foundation “Nansen International Environmental and Remote Sensing Centre”, St. Petersburg




Revision: 1.0

St. Petersburg 2006
Summary
Within the INCO2 RADARC project (ICA2-CT-2000-10037, 2001 - 2003) a Generic Model System (GMS) for the first time was created for simulations of global change scenarios in the 21st Century for potential spreading of radioactive contaminants in the Arctic Ocean from European and land-based sources in Siberia.

This SSA will demonstrate and extend the GMS applications for the management of environmental risks associated with man-made changes and industrial waste in the Arctic regions. The development of methods for risk assessment using mathematical simulation models are extremely important, especially for the anthropogenic waste concerned with persistent organic pollutants (POPs), industrial chemicals (PCP´s) and heavy metals.

Accordingly, the overall objective was to demonstrate and promote the use of an existing GMS for simulations of industrial pollution spreading in the marine Arctic environment in order to support the management of environmental risks associated with man-made changes.

One of the main results of this project was preparation of book manuscript – “Radioactivity and Pollution Spreading in the Arctic Ocean: Observations, Modelling and Simulations” with detailed GMS description and its applications on wide range of contaminant including persistent organic pollutants, heavy metals and petroleum hydrocarbons in the Arctic marine environment. Moreover, during the GMS Thematic expert Workshop a potential users group was formed and preliminary topics for new proposals for FP7 integrated projects was formulated.

A dynamic GMS project web-site with links to the CORDIS and partner’s websites for the project characterization and progress of realization was established to maintain an information flow to the potential user community.

Table of Contents



1. Summary description of project objectives 11

2. Contractors involved and external experts 12



Discription of the consortium 12

Management 15

The repartition of tasks between the partners will be as follows: 16

3. Work performed and end results 17

4. Conclusion. Impact on research or research-based policy development at regional, national or European level. using and disseminating knowledge 22

Appendix 1. Agenda and Protocol of the GMS application project Kick-off Meeting 23

1.Opening and Welcome 27

2.Approval of Agenda 27

Appendix 2. Agenda and Protocol of the GMS application Progress Meeting 30

Project management (Lasse H. Pettersson, NERSC) 31



Appendix 3. Draft of the monograph Contents. Version 5, 26 October 2005 33

Contributing authors 35

Preface (Responsible - Ola M. Johannessen, Vladimir A. Volkov) 1.06. 36

Acknowledgment (Responsible - Ola M. Johannessen, Vladimir A. Volkov) 1.06 36

List of figures 36

List of tables 36

List of plates 36

Acronyms and abbreviations 36

Introduction (Responsible - Ola M. Johannessen, Vladimir A. Volkov) 1.06 36

1.The problem of the radionuclide contamination in the Arctic and methodology of study (Responsible -Vladimir A. Volkov) 1.04 36

1.1. Sources of the artificial radionuclides contamination in the Arctic 36

(AndreyV. Stepanov, Viktor P. Tishkov et al, Lars Otto Reiersen) rough draft 20.10.05, Volkov to send to LOR 1.01.2006 36

read and edited by LOR 15.2.2006 36

Introduction 36

1.1.1. Primary and secondary sources of radionuclides contamination of the ecosystems 36

1.1.2. Main sources, composition and a transfer pathways of the artificial radionuclides in the Arctic 36

1.2. Geographical description of the region of study rough draft 1.04.06 36

(Vladimir A. Volkov, Ola M. Johannessen) , 36

1.2.1. General description, division into districts VV&OMJ 36

1.2.2. Ob’ & Yenisey river basin AS rough draft 31.12.05 36

1.2.3. Kara Sea region VV 36

1.2.4. North Atlantic and Arctic Ocean VV & OMJ 36

1.3. Radioecological monitoring and modelling rough draft 31.12.05 36

(Vladimir A. Volkov, Andrey V. Stepanov, Mark J. Zheleznyak) 36

1.3.1. Main principles of a radioecological monitoring AS 36

1.3.2. Modelling of a radioactive contamination MZ 36

1.3.3. Need for integrating Geographical Information System – GIS AS&VV 36

1.4. Generic Model System (GMS) as a new tool for an assessment of radioactive spreading (Vladimir S. Maderich, Vladimir A. Volkov, Helge Drange) 36

rough draft VM to be send to HD 31.12.05 36

HD read and edit 1.02.06 36

1.4.1. Need for a GMS 36

1.4.2. Concept of the GMS 36

2.Geographical Information System (GIS) as a basis for the radioactivity study 37

(Responsible – Andrey V. Stepanov, Vladimir A. Volkov) 1.04 37

VV read and edit to send to SN 1.03.06 37

SN edit 1.04.06 37

Introduction 37

2.1. RADARC GIS description 37

(Andrey V. Stepanov) 31.12.05 37

2.1.1. GIS basics and tools 37

2.1.2. Base cartographic data sets 37

2.2. Data description and analysis using GIS 37

(Andrey V. Stepanov) 31.12.05 37

2.2.1. Environmental data 37

(Vladimir A. Volkov, Andrey V. Stepanov, Vadim Plekhov) 31.12.05 37

2.2.2. Environmental data for radionuclide sources 37

(Andrey V. Stepanov, Sven P. Nielsen) 31.12.05 37

2.2.3. Radiation pollution data 37

(Andrey V. Stepanov, Viktor P. Tishkov, Sven P. Nielsen) 31.12.05 37

3.Descriptions of Generic Model System (GMS) 37

(Responsible - Mark J. Zheleznyak, Helge Drange) 1.04 37

MZ read and edit to send to HD 1.03.06 37

HD edit 1.04.06 37



Introduction 37

3.1. River and estuary of Ob’ & Yenisey modelling 37

(Responsible – Mark J. Zheleznyak) 1.02.06 37

Introduction 37

3.1.1. One-dimensional model for the simulation of the transport of radionuclides in the river system – RIVTOX 37

(Mark J. Zheleznyak et al.) 37

3.1.2. Numerical model for three-dimensional dispersion simulation of radionuclides in stratified water bodies – THREETOX 37

(Vladimir S. Maderich et al.) 37

Conclusion 37

3.2. Shelf Sea modelling of the Kara Sea 1.03.06 37

(Responsible – Ivan A. Neelov) 37

Introduction 37

(Vladimir A. Volkov, Ivan A. Neelov) 1.02.06 37

3.2.1. General model description 37

(Ivan A. Neelov) 1.02.06 37



3.2.2. Radionuclide tracer module 37

(Ivan A. Neelov) 1.02.06 37



3.2.3. Model validation results 37

(Vladimir A. Volkov, Ivan A. Neelov) 1.03.06 37

Conclusion 37

3.3. Open Ocean / North Atlantic modelling 1.03.06 38

(Responsible – Lasse H. Pettersson) 38

3.3.1. General model description 38

(Helge Drange, Youngi Gao) 38



3.3.2. Radionuclide tracer module (Helge Drange, Youngi Gao) 38

3.3.3. Model validation results (Helge Drange, Youngi Gao) 38

3.4. Architecture of the Generic Modelling System 1.03.06 38

(Responsible – Helge Drange, Vladimir S. Maderich, Ivan A. Neelov) 38

3.3.1. GMS structure and data streams 38

3.3.2. Modelling management 38

4.Study of the potential radioactive spreading in the Arctic using GMS (Responsible - Vladimir S. Maderich, ) 38

VM read and edit to send to SN 1.04.06 38

SN edit 1.05.06 38



4.1.1. River & estuary transport and dilution of radioactive waste and dissolved pollutants from the rivers to the Kara Sea (Vladimir S. Maderich) 38

4.1.2. Transport and dilution of radioactive waste and dissolved pollutants in the Kara Sea (Ivan Neelov) 38

4.1.3. Transport and dilution of radioactive waste and dissolved pollutants from the Sellafield (Helge Drange, Youngi Gao) 38

4.1.4. Total transport and dilution of radioactive waste and dissolved pollutants from all sources include atmospheric fallout (Helge Drange, Youngi Gao) 38

4.2. Scenario for potential radioactive releases 1.03.06 38

Introduction (Mark J. Zheleznyak, Sven Nielsen, Andrey Stepanov) 38

4.2.1. “Mayak” scenario (Mark J. Zheleznyak, Sven Nielsen, Andrey Stepanov) 38

4.2.2. “Kraznoyarsk” scenario (Mark J. Zheleznyak, Sven Nielsen, Andrey Stepanov) 38

4.2.3. “Tomsk” scenario (Mark J. Zheleznyak, Sven Nielsen, Andrey Stepanov) 38

4.2.4. “Sellafield” scenario (Sven Nielsen) 38

4.2.5. “Atmospheric fallout” scenario (Sven Nielsen) 38

4.2.6. “CO2 doubling” scenario (Helge Drange) 38

4.3. Assessments of potential accidental releases for the 21st century 1.03.06 38

4.3.1. Potential radioactive contamination from the rivers to the Kara Sea (Vladimir S. Maderich, Mark J. Zheleznyak) 38

4.3.2. Potential radioactive contamination in the Kara Sea (Ivan Neelov) 38

4.3.3. Potential radioactive contamination from the Sellafield (Helge Drange, Youngi Gao) 38

4.3.4. Total potential influence of all radioactive sources including atmospheric fallout (Helge Drange, Youngi Gao) 38

4.4. Transport of radioactivity in the Arctic and possible impact of climate change (Helge Drange, Youngi Gao) 1.03.06 38

4.4.1. Accidental scenarios under present climatology (period 1970-2000) 38

(Helge Drange, Youngi Gao) 38

4.4.2. Accidental scenarios under the global warming (2´CO2) (period 2084-2114) (Helge Drange, Youngi Gao) 38

4.5. Potential transport of radioactivity from submarine accidents 38

(Vladimir S. Maderich, Helge Drange, Youngi Gao) 1.03.06 38

5.Methodology of GMS application for simulation of non-radioactive pollutants spreading in the Arctic environment 39

(Responsible – Mark Zhelesnyak) 39

MZ read and edit to send to LOR 1.05.06 39

LOR edit 1.06.06 39



5.1.1. Siberian rivers pollution (only Ob’ and Yenisey, AARI publications, NIERSC) 39

5.1.2. Russian Arctic coastal areas pollution 39

5.1.3. Pollution of the European Arctic Coastal Areas 39

5.1.4. Polar Ocean pollution 39

5.1.4. Main sources of the marine Arctic environment pollution 39

(AMAP input, Access to the existing DB and reports on Arctic and Siberian river pollution via NIERSC and NERSC) 39

5.2.1. Basic equations 39

5.2.2. POP modelling 39

5.2.3. Petroleum hydrocarbons modelling 39

5.2.4 PCB modelling 39

5.2.5 A brief overview of the existing models/codes 39

5.3.1. Application of the river model RIVTOX MZ 39

5.3.2. . Application of the estuary model THREETOX VM 39

6.Assessment – input to risk management 39

(Responsible – Sven Nielsen) SN write and send to Viktor Tishkov 1.04.06 39

VT comments& adds 1.05.06 39



6.1.1. Assessment purpose, end points and philosophy 39

6.1.2. Source term characteristics 39

6.1.3. Environmental characteristics 39

6.1.4. Time frames and societal assumptions 39

6.2.1. Source terms 39

6.2.2. Geosphere 39

6.2.3. Biosphere 39

6.3.1. Source term scenarios 40

6.3.2. Climate scenarios 40

6.4.1. Model features and processes 40

6.4.2. Model validation 40

6.5.1. Doses along rivers 40

6.5.2. Doses in coastal regions 40

Conclusion 40

(Ola M. Johannessen, Vladimir A. Volkov) 1.06 40

Appendix A Units of a radioactivity 40

Appendix B (TBD) 40

Appendix C (TBD) 40

References 40

Index 40

Glossary 40

Volume of manuscript 41

Appendix 4. Agenda of the GMS application Thematic Expert Workshop 43

Appendix 5. Agenda of the GMS application Final Meeting 47


  1   2   3   4   5   6   7   8   9


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azrefs.org 2016
rəhbərliyinə müraciət

    Ana səhifə