Main potentials and conflicts in the Polish sea space a blue print prepared by Juliusz Gajewski and Magdalena Matczak




Yüklə 141.78 Kb.
tarix26.04.2016
ölçüsü141.78 Kb.

Main potentials and conflicts in the Polish sea space

A blue print prepared by Juliusz Gajewski and Magdalena Matczak

I. Main potentials

The Polish part of the Baltic Sea possesses three main developmental potentials (renewable energy, tourism and fish) that will guide its development in a long run. The first and the second one seem to be of a prospective nature while importance of fishing will decrease. Also maritime transport is and will be an important factor for development of the main port cities such as Gdynia, Gdańsk, Szczecin and Świnoujście and their hinterlands. Mineral deposit might play some role in the future as well but so far their development impact is difficult to predict. While developing sea space one should pay attention to nature conservation. Sea habitats and their quality is an important asset of the Baltic Sea space – instrumental both for maintenance of the fish stocks, introduction of the aquaculture and for development of the tourism industry.






Map 1.: Main sea uses of the Polish marine areas, Maritime Institute, 2007

1. Renewable energy

So far there is no single wind farm on the sea in Poland. However interest of investors to produce renewable energy in the Polish sea space is growing. The main reason is that to be in line with EU directive Poland will need 48TWh of renewable energy in 2020 (if the current GDP growth will continue). Such amount of renewable energy cannot be produced on land e.g. from biomass, wind and water. The only solution is energy produced on the sea. The existing sea space (under Polish supervision) suitable for production of renewable energy amounts to 1000 sq km (depth between 20 and 30 m, the suitable distance to the shore, suitable number of the windy days). The existing technical possibilities allow for installation of 5MW per sq. km. Multiplying this by 3500 windy hours per year the energy produced might amount 15TWh per year.

The less suitable areas (but still feasible and probably even more feasible in the future) due to the larger depth (depth between 30 and 40 m) amount 1500 sq km of Polish territorial waters and EEZ. Making use of similar assumptions except larger number of windy days one can estimate energy harvest at the level of 28 TWh per year from this area.

Therefore both areas (indicated in orange in map 1) can produce almost all renewable energy required by the EU directive. One should also note that there are some additional opportunities for production of renewable energy at sea from waves and sea currents. So far this potential has not been properly examined for the Polish part of the Baltic Sea.

If a similar approach will be adopted by other EU countries around the Baltic Sea, the need for new energy transmission infrastructure (cables) will emerge in order to connect wind farms with respective countries and with the rest of Europe. In addition, the Baltic countries will need additional connections between them to compensate for uneven distribution of the windy days among the different parts of the sea (trading of temporary energy surpluses and covering the temporary energy deficits – a kind of energy solidarity important due to random variations in production of energy from the wind). The most suitable solution would be a “Baltic” underwater high voltage cable connecting all Baltic wind farms and the whole system with European energy grid.

M
ap 2.: Potential wind energy, Maritime Institute, 2007


2. Fishery

The main figures concerning the Polish fishing industry are presented in table below:

Tab.1 Key data on Polish fishery

Year

2002

2003

2004

2005

Number of fishing vessels

409

398

249




Number of fishing boats

991

976

723




Fish catch in tonnes

142 686,2

153 805,1

124 340,6




Number of fisherman







4 056

3 188

Number of employed in fish processing







13 500

14 100

Number of employed in fish trade (retail and wholesale)







6 200

6 100

Source: „Maritime Economy statistic Review 2006”

The limits for catch of cods for Polish fisherman are at the level of 10 800 t/year and have been recently downsized from 15 000 -13 000 tones in the previous years. The average fishing vessel to break even needs to catch 70-100 tones of cod per year. So the room is for 100-150 vessels whereas the actual number is much bigger. In fact the size of Polish fishing fleet requires the catch of the cod at the level of 40 000 tones per year for this fleet maintenance. The result is overfishing of cod and frustration of fisherman being unable to break even. Such situation can not be continued in a long run.

Fishing is also not the most economic use of the existing potential of the sea space. Energy production brings around 1 400 000 EUR per year from a single sq km (5MW x 80 EUR/MW x 3500 windy hours per year) whereas fishing only 10 000 EUR from the same area. Even assuming that the official fish landings are underestimated the maximum income from fishing can be 50 000 EUR per year per sq km1. So having in mind the natural process of fishery decline, one should look for mechanisms of compensating coastal municipalities for that e.g. by offering them economic stake in energy production on the sea. It should be also noted that fishery decline will have only moderate impact on the whole fishing industry in Poland. The turnover of this industry amounts 2 600 000 000 PLN per year (approximately 703 000 000 EUR per year) whereas the value of catch of cod, herring and sprat by Polish fishermen according to official data does not exceed 40 000 000 EUR per year (equivalent to wind energy production on 200 sq km).

3. Nature

The main problem with nature is that this potential has been hardly examined, researched and classified. E.g. the Natura 2000 areas were erected without sufficient knowledge what should in fact be protected. There is no systematic knowledge available so far on the maritime biotopes and habitats in the Polish EEZ and internal and territorial waters. However, some parts of the sea (e.g. lagoons, Puck Bay) are better researched than the others. But even there, more reliable information has been gathered only for some smaller areas of special importance. Another problem is the much more intensive dynamics of the marine versus land environment. Therefore information about sea habitats might loose its validity in a short period unless constant and costly monitoring and sampling is intalled. Only last year a large project has been started in Poland– "Przyrodnicze uwarunkowania planowania przestrzennego w polskich obszarach morskich z uwzględnieniem sieci Natura 2000(Ecosystem approach to marine spatial planning – Polish marine areas and the Natura 2000 network)" (http://www.pom-habitaty.eu/) to develop the methodology, examine and identify (using up to date hydroacoustic, satellite and biological methods) habitats of the Natura 2000 areas. Therefore given below evaluation of the marine biotopes of Poland should be treated with caution. It is based mainly on available literature as well as unpublished long-term data and observations on temporal and spatial scales. Intensive studies have also been carried out in the Gulf of Gdansk and Pomeranian Bay. Less is known about shallow water biotopes in the open sea region.

The following subregions occur within the Polish marine zone:

1) the southern part of the Bornholm Deep (max. depth 90 m),

2) the Slupsk Furrow (90 m),

3) the western part of the Gdansk Deep (110 m),

4) the south-western part of the Gotland Deep (120 m),

5) the eastern part of the Pomeranian Bay and the western part of the Gulf of Gdansk.

A stable halocline occurs at a depth of 60 m in the Bornholm Deep, at 70 m in the Slupsk Furrow, and 80 m in the Gdansk Deep. The salinity of the isohaline layer is about 7‰, while below the halocline it varies between about 18‰ in the Bornholm Deep and 10‰ in the Gdansk Deep.

The degree of naturalness and degradation of biotopes varies, with the greatest changes being observed below the halocline in the Gdansk and Bornholm Deep. Long-lasting periods of oxygen deficiency have caused the disappearance of almost all macroscopic life on the bottom and the impoverished plankton has limited fish reproduction.

Recent observations have shown that a similar process is taking place in the deepest part of the Slupsk Furrow. Great changes have also been observed in the shallow water biotopes in the low salinity part of Puck Bay where the underwater meadows are reduced in size and have changed in structure. Nano or two species meadows have begun to prevail and a community with Fucus vesiculosus and Furcellaria spp. as dominant species, may no longer exist. A predomination of brown algae species Pilayella litoralis and Ectocarpus siliculosus as the only representatives of phytobenthos in some areas is a new phenomenom. Changes in macrophyte vegetation were followed by changes in structure of benthic and planktonic communities. Such drastic changes have not been observed in the open waters above the halocline. Biotopes with a high degree of naturalness occur there, those from the bottom of the Slupsk Bank are an example. Good light conditions together with the rocky bottom in the Slupsk Bank favour the development of macrophytes and associated bottom fauna. In that region the following macrophytes were observed: Fucus vesiculosus, Furcellaria lumbricalis, Delesseria sanguinea and some others, which have probably disappeared in the Gulf of Gdansk.

The discharges of nutrients and pollutants, carried into the Polish coastal bays from the waters of the Vistula and Oder rivers are considered the greatest threats to biotopes in the Polish zone.

Alien species pose a potential threat which is difficult to foresee and evaluate. Recent studies have shown a very dynamic development of the polychaete Marenzelleria viridis which has been brought from America with ballast waters, and which has become a dominant species in waters close to river outlets. Negobius melanostomus, a fish brought from the Caspian Sea, is becoming more dominant in the Gulf of Gdansk.

The European Red List of Threatened Animals and Plants includes the following species which are found in the Polish zone: harbour porpoise, ringed seal, sturgeon (extinct), and lavaret. Species conservation comprises all Baltic mammals, nearly all birds occurring permanently or periodically in the Polish zone, and the following fish: Acipenser sturio, Alosa fallax, Alosa alosa, Pomatoschistus microps, Myoxocephalus quadricornis, Liparis liparis, Spinachia spinachia.

The Baltic Sea Protected Areas (BSPA) now include the Wolinski and Slowinski National Parks, the Slupsk Bank, the Puck Bay and the Pomeranian Bay.

The summary description of Natura 2000 Habitat area is given in the table below.



Tab 2. Natura 2000 Habitat areas in Poland

Natura 200 area

Number of habitat/ species types out of Annex to the Habitat/Bird Directive

Specific features

Threats

Puck Bay and Hel Penninsula (PLH220032)


12

  • great biodiversity of underwater meadows and occurrence of rare, often relict coastal flora and fauna species

  • most numerous observations and catches of marine mammals (porpoise and grey seal)

  • of importance for the migrating birds

  • anthropogenic water pollution;

  • uncontrolled pressure and development of tourism infrastructure (development in ecologically valuable locations, high traffic, etc.)

  • exploitation of sand used for peninsula stabilisation and renovation of camping beaches – (direct threat to the underwater meadows)




Słupsk Bank (PLC990001)


No habitats

  1. macroalgas, with species extinct in other parts of Polish waters.

  2. birds reserve of European importance

  3. occurrence of red algae Delesseria sanguinea – which is extincted in the other parts of the Baltic Proper.

  4. numerous vertebrates, being a rich food base for migrating birds.

  1. exploitation of underwater mineral layers

  2. possible wind power plants location.

  3. some of the fishing activities harmful to the migrating birds.

  4. potential threats – gas and crude oil exploitation.

Vistula Lagoon (PLH280007)


18 habitats and 13 species

  • vascular plants threatened in Poland and characteristic for rare and extinct habitats

  • occurrence of Lampetra fluviatilis and Alosa fallax.

  • grey seal regularly noted here.

  • important bird reserve

  • anthropogenic water pollution

  • eutrophiscation

  • fishing activities (mainly catch-by)

  • intensive exploitation of reed

  • wind power plants.




OSTOJA SLOWINSKA (PLH220023)


28

  • important habitat for Baltic porpoise

  • an important RAMSAR area

  • mainly tourism pressure to the birds nesting sites




Pommeranian Bay (PLB990003)





  • an important birds reserve of international importance

  • regular Baltic porpoise observations,

  • protection of Alosa fallax (Twaite shad) and key are for the protection of habitat

  • potential wind farms plants locations

  • fishing activities




Vistula river mouth area (PLH220044)


7

  • a biggest and most important of Polish estuaries

  • strong tourism pressure

  • strong pressure of Gdansk agglomeration

  • hydrotechnic works (navigation channel at the river)

  • water pollution

  • floods




Source: Ministry of Environment of Poland
There are also 3 huge areas established for NATURA 2000 under the Birds Directive, these are: Vistula Lagoon, Baltic Coastal Waters and Pomeranian Bay.
The nature protection areas are shown on the Map 1.
4. Minerals

The reliable inventory of the mineral deposits in the Polish part of the Baltic Sea does not exist. Therefore this potential cannot be assessed in a more accurate manner. Concession given for extraction of minerals are indicated in Map 1.



the chapter will be developed latter on.
5. Tourism

The genuine maritime tourism is in its infancy period whereas Poland possess very suitable conditions for windsurfing, kite surfing and yachting. However the necessary infrastructure on the coast is underdeveloped. Therefore the main task here is to asses the exiting potential for tourism provided by the sea space (depth of the sea and number of windy days) and to examine it against the limits and constraints created by the spatial features (organisation) of the coastal strip (settlement structure, nature protection and carrying capacity of the nature, transport infrastructure etc). Such approach would facilitate planning of both sea use and spatial development of the coastal area.

Second opportunity is underwater tourism. Also here information concerning cultural heritage suitable for that purpose is largely missing or insufficient.

The third form of tourism related to the sea use is open sea angling. The potential for its development is incredible and no restrictions on fish catch exist so far. Here the main constraint is the demand, which should be developed.



the chapter will be developed latter on.

6. Maritime transport

Maritime transport from Polish ports has been growing fast rate for several years. Polish sea space has demonstrated its capacity to accommodate this growth posing no limits for commercial navigation. The main factor for development of the sea transport in the future is demand growth vis nature protection and recreation requirements. Navigation routes are shown on the Map 1.



the chapter will be developed latter on.

II. Sea use Conflicts

Baltcoast has identified the following main existing or expected use conflicts



Main expected/ potential use conflicts







wind farms, connecting cables

other cables

mineral oil/ gas extraction & connecting pipelines

other pipelines

aquaculture

sand/ gravel extraction

shipping routes

nature protection areas

dumping areas

fishing/military training areas

Other offshore and onshore uses

Wind farms & connecting cables /landside infrastructure







Xx







xx

xx

x

xx

xx

x

Other cables (electricity, telecom)







X

x(?)




xx

x




xx

xx

x

Mineral oil/ gas mining and connecting pipelines

xx

x




x(?)




xx

xx(x)

xx(x)

xx

xx

x

Other pipelines




x(?)

x(?)













x







x

Aquaculture


































Sand/ gravel extraction

xx

xx

Xx













x

xx

xx




Shipping routes/ anchorage areas

xx

x

xx(x)













x

xx

xx

x

Nature protection areas

x




xx(x)

x




x

x




x(xx)

x

x

Dumping areas

xx

xx

Xx







xx

xx

x(xx)




x

x

Important fishing/ Military training areas

xx

xx

Xx







xx

xx

x

xx




x(xx)

Other offshore uses:

coastal safety

recreation


x

x


x

x


x

x


x

x








x

x


x

x

x(xx)




A detailed description of these conflicts, as identified by the Baltcoast project is given in the annex.

For the concrete Polish case, at present the following conflicts can be observed or predicted (with focus on the potentials described in the previous chapter):



1. Wind farms & connecting cables/ landside infrastructure

Renewable energy ahs been identified as one of the most important potentials of the Polish sea space and the conflicts connected with development of wind farms seem to be the most evident now in the Polish part of the Baltic Sea. The reason is the EU directive requiring 20% of renewable energy up till 2010. This increases the interest of private investors in developing renewable energy at the sea space (both from wind and sea currents). For development of the wind farms the following issues have already created serious constraints in Poland:



  • Military training areas and related corridors. The main problem is that these areas are secret, so they cannot be taken into consideration at the early stage of planning. There is no coherent strategy of the Navy telling which areas and why should be reserved for training or other purposes. The problem is that such areas cover the parts of the internal and territorial Polish sea most suitable for development of renewable energy. (but also for other economical activities). The approach to the use of sea space by the military should be the same as to land space. It means that the approach of the Navy to its use of sea space (and priorities) may need reconsidering, and that the Navy should participate in planning procedures from the beginning on a pro-active instead of the hitherto reactive basis.

  • Fishing activities Trawling fishing inside the wind farm and within the safety zone of the cable linking the farm with shore should be restricted, forcing fishermen to additional manoeuvres. As it was seen on the maps, some of the most suitable areas for renewable energy production are also highly productive as far as fish catch is concerned. Therefore there is a need for financial compensation paid to fisherman by wind farms owners. The problem is that for calculating these compensations the official data concerning the amount of catch should be used. These figures are undervaluated, so a conflict may appear. But in the long run, wind farms can create suitable conditions for fish breeding (including also aquaculture). So one can speak also about some synergetic effects at least as far as protection of habitat is concerned.

  • Nature protection. The main problem is by now the need to respect both requirements of protecting the coast and coastal nature when planning for necessary connecting (cable) infrastructure. There are only few parts of the coast where power lines can cross the coastline, and even in these few cases the construction of tunnels under the dunes and seabed might be necessary (burying the cable sufficiently deep below the seafloor in the nearshore zone - water depth below 8 m - depth of burial depending on local morphodynamics). The result is high costs of building this infrastructure in line with the nature protection requirements. The solution might be a public high voltage grid extended from land to sea in the few suitable parts of the coast and available for use by different wind farms owners. With bird protection the issue is less evident. Many investigations show much less harmful effect of wind farms on bird migration than originally expected. Here the main problem is lack of suitable data. In fact the Natura 2000 areas have been erected ON THE SEA without sufficient information what is protected, why and when. Therefore it is extremely difficult to obtain a clear picture what human activities should be restricted there and during what part of the year. The same problem is impact on sea mammals. It should be researched in the future.

One can also expect some other conflicts in the future (hopefully slightly easier to overcome).

  • Shipping routes especially those crossing both pipelines and cables at the same place. The reason is that an anchor can tow the cable and this in turn can damage (slice) pipelines if installed beneath them. Therefore it is important that cables are put parallel to the pipelines to save space, that their crossing is avoided as much as possible, and that when it has to happen, the cables are placed above the pipelines.

  • Cultural heritage. The problem is that cultural heritage under the sea surface (wrecks, settlement structures) has not been evidenced so far to the sufficient extend. Therefore it might appear only as a barrier when preparing detailed sea use plans for concrete investment sites and might result in unpredictable increase of investment costs.

  • Recreation. Here conflicts may be superficial, powered by ambitions of local governments. To avoid them the separation belt between coast and wind farms is to be introduced in sea use planning in Poland to avoid degradation of maritime landscapes and to allow for recreational sailing. But there might be a second bottom (of economic nature) of such conflicts as well. Therefore it would be desirable if local municipalities could have an economic stake in wind farms on territorial waters bordering them.

  • Mineral extraction Extracting sand/ gravel inside a wind farm is technically difficult and could result in significant danger to wind farm installations. The only solution here is prioritizing between different forms of economic use of the sea space at the stage of preparation of the sea use strategic plans. With oil and gas extraction the conflicts are less obvious since the contemporary techniques allow for their extraction beneath sea wind farms (at least to some extent). The main problem is that mineral deposits have not been sufficiently identified so far. This makes proper sea use planning very difficult. On the other hand constructing offshore wind farms on strategic marine aggregates and energy resources might preserve them for future use.

2. Aquaculture and fishing

The conflicts with mariculture and fishing are of less spatial character but still they might bring some spatial implications:



  • Nature protection and fishing. This conflict is now one of the most important for Polish sea space. Currently, according to many studies, over-fishing is happening in the Polish part of the Baltic Sea and still fisherman cannot earn sufficient money for living. In the long run this will deprive the fishermen of their economic basis. The spatial consequences are twofold: (a) different types of using sea space should be prioritised against fishing, (b) there is a need to plan in long term new economic functions for coastal municipalities to avoid their mono-functional (only pro-tourism) structure. Here there is a need for a special development programme for the coast including spatial aspects (e.g. second homes, tele-work telecommuting, fishery culture preservation aspects, etc.)

  • Nature protection and aquaculture. It seems that aquaculture is not a solution to the natural decrease of the fishing industry in Poland (at least for the time being). The main reason are the negative impacts of aquaculture on sea habitats such as aquaculture based pollution (nutrient and organic enrichment), introduction of alien species (often genetically modified), input of chemicals and medicines used in the cultivation process and introduction of aquaculture diseases into the natural environment. If such consequences could be restricted (avoided), in the future aquaculture should be developed together with wind farms for obvious synergetic effects and to avoid competition with other coastal space users (as mainly limited to the shallow coastal waters, river mouths, ect) - like coastal tourism, coastal fishing, nature protection or anchorage areas.

  • Climate change. Climate change may lead to far going changes of the salinity level and average temperature of the Baltic Sea in the future. This will result in changes of the sea habitats and changes in species. It will influence both fishing and aquaculture in particular in the eastern and northern part of the Baltic Sea, but perhaps also in the Polish part of the sea, accelerating the negative impacts described in the previous indents.

3. Sand/ gravel extraction, mineral oil/ gas mining and connecting pipelines

Here the conflicts so far are non existing but might happen in the future in line with the Baltcoast forecast. The main reason of the lack of conflicts is low intensity of the use of the Polish sea space for mining activities. The conflicts can also be difficult to predict in reality (and unfortunately difficult to take into consideration when developing sea use plans) due to lack of sufficient information of the mineral deposits located in Polish territorial and internal waters. It should be noted that all linear installations cause artificial zoning of space, thus causing also problems to spatially extensive type of uses.



4. Tourism

Tourism has been indicated as one of the most important potential for development of coastal settlements in northern Poland. So far genuine sea tourism (yachting, wind surfing) is still underdeveloped in Poland comparing to the northern part of the Baltic Sea. The main conflicts at present concern the conventional coastal (beach based) tourism and nature protection and environment (among others, due to concentration of activities in two summer months). In some parts of the Polish coast tourism and recreation activities may oveerlap into valuable nature and/or historical heritage areas. This will require zoning as well as using temporal and 3-dimensional rstrictions imposed on the tourism and recreation activities. On coastal land pressure from tourism may result in degradation of cultural landscapes and urban spatial order. Traffic jams and congestions on roads have been experienced for several years. Therefore at least there is a need for development of the environment-friendly public transport along the most intensively used parts of the Polish cost.

As far as sea tourism is concerned, there is a need for developing marina networks along the Polish coast. This might be in conflict with Natura 2000 areas. Another spatial conflict is the lack of access for yachts to the Vistula Lagoon through Baltijsk straight. This hampers development of coastal municipalities in this area.

5. Shipping routes/ anchorage areas

The use of a sea area for navigation routes and anchorage areas, has not resulted yet in serious conflicts besides mentioned above possible conflicts with electric cables. The main reason is that navigation together with nature protection is prioritised against all other types of sea uses in Poland. The impact of navigation on nature has not been sufficiently analysed so far, therefore conflicts in this field have not been sufficiently identified. The most possible and serious conflict might be with coastal safety as identified by Baltcoast but so far it was not experienced in reality in Poland.


6. Dumping areas

Here the conflicts concern mainly coastal safety (the part of the coast near the Stilo Lighthouse is disappearing). Dumping of large amounts of dredged spoil has resulted in a change of bottom relief, which caused disruption of sediment transport patterns in the coastal zone, and in effect in strengthened coastal erosions. Such conflicts might be o avoided in the future in line with the Baltcoast recommendations through proper planning of the maritime space. There are no conflicts with nature protection - in Polish conditions, due to the small amounts dumped and covering with a layer of clean sand, the conflict is expected to be insignificant.

7. Nature protection areas

Apart of earlier mentioned conflicts between nature and tourism or nature and aquaculture, nature protection requirements may be in conflict with requirements of coastal safety. A marine nature protection area may require that natural coastal processes should be unchanged by human intervention. Conflict, sometimes serious, could appear when such an area is in front of an eroding coast with high social, economical or even land nature values which require high levels of safety. Such a problems occur sometimes on the Polish coast (e.g. near Jastrzebia Góra). Also the Hel Peninsula is threatened with flooding and overflows during storm surges if not properly and constantly protected. However, in principle these conflicts are already solved in Poland through its long term coastal protection strateggy, which takes into account the requirements of development of the coastal zone, nature protection and climate change.

Annex: Main conflicts described by Baltcoast

Wind farms & connecting cables/ landside infrastructure

The use of a sea area for wind farms excludes the use of that area for:



  • oil and gas extraction (accidents/ damage of each type of installation – oil rig or wind mill – may result in significant danger to the other installation and stoppage time; for reasons of safety and environment protection there must be an unimpeded access to oil rigs; oil rigs may introduce a disturbance in the wind field thereby reducing effectiveness of the wind farm),

  • sand and gravel extraction (exctracting sand/ gravel inside a wind farm is technically difficult and could result in significant danger to wind farm installations),

  • shipping routes (wind farms are an obvious risk to safety of navigation of large vessels; however small vessels with high manoeuvrability could be allowed to pass through the wind farm by special permit on a non-routine basis, nevertheless anchoring in the wind farm and linking cable safety zone areas should be forbidden to reduce the risk of damaging the cable network),

  • dumping areas (after some time, wind farm areas become significant biodiversity sites – dumping would reduce this positive effect; danger resulting from difficult manoeuvring inside the wind farm area; difficulty of controlling the dumped material),

  • fishing activities (especially trawl fishing inside the wind farm and within the safety zone of the cable linking the farm with shore – for obvious reasons, but hook fishing, recreational angling from small vessels could be made possible by special permit), and

  • military training areas (for obvious reasons of safety of navigation, but also because military training activities could be very dangerous to wind farm installations).

The only possible solution is to select such sites for the wind farm and/or the other above-mentioned uses that they do not coincide with each other.

There may be some conflict with:



  • nature protection (tired birds landing on water to rest during their seasonal journeys may be killed by rotating blades); solution – locate the wind farm outside the coastal area where birds land or fly below the height of ca. 150 m,

  • coastal safety – concerns cable links with the shore (improper landing of the cable will increase coastal erosion); solution – bury the cable sufficiently deep below the seafloor in the nearshore zone (water depth below 8 m), depth of burial depending on local morphodynamics,

  • recreation (degradation of landscape); the extent to which the presence of wind farms in front of recreational beaches may (or may not) influence the tourism and recreation industry is not certain; proposed solution – (a) locate the wind farms at such a distance that they are at most only slightly visible from the shore, and (b) use possibly high power generators to reduce the spatial size of the wind farm.

It seems that more profound scientific studies are needed in order to examin the real/true impact of windfarms on natural marine environment, especially on fish resources, endengered marine mammals and migrating birds.

Other cables (electricity, telecom)

The use of a sea area for electricity and telecom cables excludes the use of that area for:



  • sand and gravel extraction (extraction activities may damage the cables),

  • dumping areas (dumped material will make access to the cables more difficult in case of repairs),

  • military training areas (training activities, especially shooting, may damage the cables).

The only possible solution is to select such routes of the cables and/or sites of the above-mentioned uses that they do not coincide with each other.

There may be some conflict with:



  • mineral oil/gas extraction and connecting pipelines (crossing); solution: appropriate technical solutions including sufficient distance between the pipeline and cable(s),

  • navigation and fishing activities (anchoring and bottom trawls may damage the cables); solution: bundle the cables to reduce space taken up by cables and their safety zones,

  • coastal safety and recreation – concerns the landing sites of the cables (improper landing of the cable will increase coastal erosion and could be dangerous to people); solution – bury the cable sufficiently deep below the seafloor in the nearshore zone (water depth below 8 m), depth of burial depending on local morphodynamics,

Mineral oil/ gas mining and connecting pipelines

The use of a sea area for mineral oil/gas mining and to a certain extent for connecting pipelines excludes the use of that area for:



  • wind farms and connecting cables,

  • sand and gravel extraction (danger to oil rig and related infrastructure, potential pollution of deposits in vicinity of the rigs, making them unusable),

  • shipping routes (safety of navigation)

  • nature protection (risk of pollution),

  • dumping areas (for the same reasons as in case of wind farms and cables),

  • fishing and military training areas (for reasons of safety, and in case of fishing – also due to possible contamination of the fish)

The only possible solution is to select such sites of the oil rigs and routes of pipelines and/or sites of the above mentioned uses that they do not coincide with each other.

There may be some conflict with:



  • electricity and telecom cables

  • in case of pipelines: shipping routes and fishing (possible damage of the pipelines by anchors or bottom trawls); solution – burying the pipelines sufficiently deep below the seafloor, safety zones along the pipelines, “bundling” to reduce space taken up by pipelines and resulting difficulties,

  • coastal safety and recreation – concerns the landing sites of pipelines (improper landing of the pipeline will increase coastal erosion and could be dangerous to people); solution – bury the pipeline sufficiently deep below the seafloor in the nearshore zone (water depth below 8 m), depth of burial depending on local morphodynamics.

Other pipelines (waste-water discharge pipelines)

There may be some conflict with:



  • nature protection (rather local pollution); solution – enforce high purity standards, locate outlets far enough from the shore and at locations ensuring good mixing,

  • coastal safety and recreation – apart of possible pollution of the beach, concerns the landing sites of the pipelines (improper landing of the cable will increase coastal erosion and could be dangerous to people); solution – bury the pipeline sufficiently deep below the seafloor in the nearshore zone (water depth below 8 m), depth of burial depending on local morphodynamics.

Aquaculture

The mariculture is not an issue in the study area at the moment, still some conflicts can be described. Potential conflicts mainly concern its impact on natural environment and depends on the aquaculture type but most important seems to be the aquaculture based pollution (nutrient and organic enrichment), introduction of alien species (often genetically modified), input of chemicals and medicines used in the cultivation process and introduction of aquaculture diseases into the natural environment.

Aquaculture can also compete with other coastal space users (as mainly limited to the shallow coastal waters, river mouths, ect) - like coastal tourism, coastal fishing, nature protection or anchorage areas.

In coastal areas, water quality problems could also become critical factors for aquaculture development.



Sand/ gravel extraction

The use of a sea area for sand/ gravel extraction, besides mentioned above exclusions, excludes the use of that area for:



  • dumping sites (introduction of unwanted sediments into the mining area, pollution of sediments),

  • military training areas (possible waste, ammunition)

The only possible solution is to select such sites of sand/ gravel extraction and/or sites for strongly conflicting uses that they do not coincide with each other.

Shipping routes/ anchorage areas

The use of a sea area for navigation routes and anchorage areas, besides mentioned above exclusions, excludes the use of that area for fishing, military training and dumping areas (obvious reasons of safety of navigation). The only possible solution is to avoid coincidence of such uses with each other.

There may be some conflict with (besides the earlier mentioned “soft” conflicts):


  • nature protection (too much traffic may have a detrimental influence on nature, possible pollution in case of accidents); possible solutions – strict enforcement of safety of navigation regulations, use of vessel traffic management systems, alignment of navigation routes and anchorage areas at sufficient distance from valuable nature protection areas,

  • coastal safety (beach pollution resulting from accidents at sea may require removal of vast amounts of sand from beaches, in effect increased coastal erosion may be expected); possible solutions – organisation of vessel traffic reducing the risk of collision including VTM systems, good contingency planning and technical preparedness for spill removal, leading the shipping routes and selecting anchorage areas in such a way that they do not endanger vulnerable stretches of coastline,

  • recreation – practically the same risks and solutions as in case of coastal safety.

Dumping areas

Apart of the earlier mentioned conflicts, selection of a sea area for dumping may be in rather “soft” conflict with:



  • nature protection (possible pollution); in Polish conditions, due to the small amounts dumped and covering with a layer of clean sand the conflict is expected to be insignificant,

  • fishing/ spawning areas (possible pollution); solution – do not locate dumping sites in such areas and sufficiently deep ones, this is easy to achieve since due to small amounts of dumped material the dumping sites take up little space,

  • coastal safety (dumping of large amounts of dredged spoil may result in a change of bottom relief, which can cause disruption of sediment transport patterns in the coastal zone, and in effect in strengthened coastal erosion); at present this not an issue in the study area.

Nature protection areas

Apart of earlier mentioned conflicts, nature protection requirements may be in conflict with requirements of coastal safety. A marine nature protection area may require that natural coastal processes should be unchanged by human intervention. Conflict, sometimes serious, appears when such an area is in front of an eroding coast with high social, economical or even land nature values which requires high levels of safety. In the near future this conflict may be strengthened due to climate change and related sea level rise. Possible solutions – use environment-friendly methods of coastal protection (e.g. beach nourishment). If such a solution is impossible due to lack of e.g. sand or because this is still unacceptable for nature conservation reasons, priority should be given either to human needs or nature conservation and appropriate action taken (reduce requirements of nature conservation or decide not to designate the nature protection area, or allow erosion and inundation and move human activity away from the coast).



1 The problem is that we are speaking about incomes and should speak about profits from sq km.

The East West Window project is part-financed by the European Union. The contents of this report are the sole responsibility of Maritime Institute in Gdansk and can under no circumstances be regarded as reflecting position of the European Union. Grant Contract for European Community External Actions 2007/132-845.



Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azrefs.org 2016
rəhbərliyinə müraciət

    Ana səhifə