# January 2006 6677 Mechanics M1 Mark Scheme Question Number

Yüklə 55.68 Kb.
 tarix 18.04.2016 ölçüsü 55.68 Kb.

January 2006 6677 Mechanics M1 Mark Scheme

 Question Number Scheme Marks 1. (a) Distance after 4 s = 16 x 4 – ½ x 9.8 x 42 = – 14.4  h = (+) 14.4 m (b) v = 16 – 9.8 x 4 = –23.2  speed = (+) 23.2 m s–1 M1 A1 A1 (3) M1 A1 A1 (3) 6 2. (a) CLM: 3 x 4 + 2 x 1.5 = 5 x v  v = 3 m s–1 (b) (i) CLM: 3 x 4 – m x 4 = –3 x 2 + m (x 1)  m = 3.6 (ii) I = 3.6(4 + 1) [or 3(4 + 2)] = 18 Ns M1 A1 A1 (3) M1 A1 A1 (3) M1 A1 (2) 8
 Question Number Scheme Marks 3. (a) M(C): 25g x 2 = 40g x x x = 1.25 m (b) Weight/mass acts at mid-point; or weight/mass evenly distributed (o.e.) (c) y 1.4 M(C): 25g 15g 40g 40g x 1.4 = 15g x y + 25g x 2 Solve: y = 0.4 m M1 A1 A1 (3) B1 (1) M1 A1  M1 A1 (4) 8 4. R = 103/2 i – 5j Using P = 7j and Q = R – P to obtain Q = 53i – 12j Magnitude = [(53)2 + 122]  14.8 N (AWRT) angle with i = arctan (12/53)  64.2 bearing  144 (AWRT) Alternative method θ .Vector triangle correct P Q Q2 = 102 + 72 + 2 x 10 x 7 cos 60 120 Q  14.8 N (AWRT) R 14.8 = 10 sin 120 sin θ  θ = 35.8,  bearing 144 (AWRT) M1 A1  M1 A1   M1 A1 M1 A1 A1 (9) B1 M1 A1 A1 M1 A1   M1 A1, A1 9

 Question Number Scheme Marks 5. 18 (a) R( perp to plane): P P sin 30 + 10 cos 30 = 18 18μ Solve: P  18.7 N 10 (b) R( // plane): P cos 30 = 10 sin 30 + F F = 18μ used Sub and solve: μ = 0.621 or 0.62 (c) Normal reaction now = 10 cos 30 Component of weight down plane = 10 sin 30 (= 5 N) (seen) Fmax = μRnew  5.37 N (AWRT 5.4) 5.37 > 5  does not slide M1 A1  M1 A1 (4) M1 A1 M1   M1 A1 (5) M1 A1 B1  M1 A1 cso (5) 14

 Question Number Scheme Marks 6. (a) Speed of A = (12 + 62)  6.08 m s–1 (b) tan θ = 1/6  θ  9.46 θ 6 Bearing  351 1 (c) P.v. of A at time t = (2 – t)i + (–10 + 6t)j p.v. of B at time t = (–26 + 3t)i + (4 + 4t)j (E.g.) i components equal  2 – t = –26 + 3t  t = 7 j components at t = 7: A: –10 + 6t = 32 B: 4 + 4t = 32 Same, so collide at t = 7 s at point with p.v. (–5i + 32j) m (d) New velocity of B = (3i + 4j) m s–1 P.v. of B at 7 s = –26i + 4j + 1.6(3i + 4j) x 7 = 7.6i + 48.8j PB = b – p = 12.6i + 16.8j (in numbers) Distance = (12.62 + 16.82) = 21 m M1 A1 (2) M1 A1 A1 (3) B1 (either) M1 A1  M1 A1 cso (5) B1 M1 A1  M1  M1 A1 (6) 16

 Question Number Scheme Marks 7. (a) T A: 3mg sin 30 – T = 3m.g 3mg  T = mg (b) T R F: R(perp): R = mg cos 30 mg R(//): T – mg sin 30 – F = m.g Using F = μR  μ = 0.693 or 0.69 or (c) T T Magn of force on pulley = 2T cos 60 = mg Direction is vertically downwards M1 A1 A1 (3) M1 A1 M1 A2, 1, 0 M1  M1 A1 (8) M1 A1  B1 (cso) (3) 14

Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azrefs.org 2016
rəhbərliyinə müraciət