1. Giriş. Materiallar müqavimətinin inkişafının əsas tarixi mərhələləri




Yüklə 251.05 Kb.
səhifə1/3
tarix10.04.2016
ölçüsü251.05 Kb.
  1   2   3
AZƏRBAYCAN DÖVLƏT AQRAR UNİVERSİTETİ


AQROTEXNOLOGİYA FAKULTƏSİ


MEMARLIQ VƏ TEXNİKİ QRAFİKA KAFEDRASI


MÜHAZİRƏÇİ : DOSENT MƏMMƏDOV VİLAYƏT İSRAFİL


MÖVZU:

MATERİALLAR MÜQAVİMƏTİ HAQQINDA ƏSAS ANLAYIŞLAR .
PLAN:

1.Giriş.

2.Materiallar müqavimətinin inkişafının əsas tarixi mərhələləri.

3.Materiallar müqavimətində öyrənilən cisimlər.

4.Materiallar müqavimətində fərziyyələr.

5.Deformasiyalar və yerdəyişmələr.

6.Xarici qüvvələr.

7.Daxili qüvvələr.

8. Gərginlik.

9.Deformasiyanın növləri.
ƏDƏBİYYAT:

1.H.Süleymanov.Materiallar müqaviməti.Maarif nəşriyyatı,Bakı,1971.

2. Ə.Bayramov.Sərbəst iş üçün praktiki materiallar müqaviməti kursu.Maarif nəşriyyatı,

Bakı,1998.

3. V.Feodosev.Materiallar müqaviməti.Maarif nəşriyyatı,Bakı,1963.

GƏNCƏ- 2010
I. Giriş.

Materiallar müqaviməti ali texniki məktəblərdə öyrənilən mühüm ümumi mühəndis fənndir.Bu fənn nəzəri mexanikanın əsas nəticələrinə əsaslanır,nəzəri və təcrübi araşdırmalar aparır.

Mühəndisi konstruksiyalar,qurğular,maşın və mexanizmlər,onların elementlərinin möhkəmlik,sərtlik,dayanıqlıq,dözümlülük, qənaətlilik və s məsələlər daxil olmaqla əsas fundamental məsələləri həll edir ki,bu da materiallar müqaviməti fənninin əsas məqsədidir.

Deformasiya olunan bərk cismin mexanikasının ayrılmaz bir hissəsi olan Materiallar

müqaviməti elmi elastiklik nəzəriyyəsinin geniş nəzəri tədqiqatlarına əsaslanır.

Qurğu (tikinti və ya maşın) hissələrinin möhkəmlik,sərtlik və dayanıqlığından bəhs edən elmə materiallar müqaviməti deyilir.Materiallar müqaviməti materialların mexaniki xassələrini,qurğu hissələrinin məhkəmlik və qənaətlilik şərtlərini öyrənir.

Materiallar müqaviməti real cisimlərdən bəhs edir.Bu cisimlərə xarici qüvvələr təsir etdikdə onun hissəcikləri arasındakı məsafələr dəyişir və bu məsafələrlə əlaqədar olaraq cismin həndəsi forması və ölçüləri dəyişir,cisim deformasiyaya üğrayır.Cismin hissəcikləri arasındakı məsafələrin dəyişməsi nəticəsində onun daxilində xarici qüvvələrə müqavimət göstərən daxili qüvvələr yaranır.Daxili müqavimət qüvvələrinin qiyməti cismin deformasiyaya uğraması dərəcəsindən asılır.

Cismin deformasiyası ona təsir edən xarici qüvvələrin son qiyməti ilə daxili müqavimət qüvvələri arasında müvazinət yaranana qədər davam edir.

Xarici qüvvələrlə daxili qüvvələrin müvazinətlik halına cismin gərgin halı

deyilir.
II. Materiallar müqavimətinin inkişafının əsas tarixi mərhələləri.

Materiallar müqaviməti elminin meydana gəlməsi mürəkkəbliyinə və xüsusiyyətlərinə görə müxtəlif növ tikinti və qürğuların yaradılması,habelə maşınqayırmanın geniş inkişafı ilı əlaqədar olmuşdur.Analitik üsulların dərin laboratoriya və zavod tədqiqatları ilə materialların xassələri və xüsusiyyətlərinin uyğun gəlməsi tələb edilirdi.Digər tərəfdən nəhəng qurğuların dəqiq hesabatı tələb edilirdi.Belə məsələlər elastiklik nəzəriyyəsinin verdiyi üsullarla öyrənilirdi.Materiallar müqaviməti və elastiklik nəzəriyyəsinin paralel inkişafı başlandı.

Qurğuların və konstruksiyaların hazırlanması materialların mexaniki xassələri haqqında elmin yaranmasını tələb edirdi.Vaxtilə Arximed (287-212 b.e.qədər) Materialların xassəsini öyrənmiş,lakin onun gördüyü işlərin bir hissəsi bizə gəlib çatmışdır.

Qədim Yunanıstanda,Misirdə,Romada nəhəng memarlıq tikintilərinin yaradılması materialların mexaniki xassələrinə diqqəti artırdı.Möhkəmlik haqqında elm olmadığından qürğular yalnız memarların təcrübələri əsasında yaradılırdı.

Möhkəmlik məsələlərini ilk dəfə Leonardo da Vinçi (1452-1519) öyrənmişdi.Materiallar müqaviməti fənninin yaranması tarixi Qalileo Qalileyin (1638) adı ilə bağlıdır.1660-cı ildə ingilis alimi Robert Huk (1635-1703) materiallar müqavimətində əhəmiyyəti olan dartılan bruslarda uzanmanın yüklə düz mütənasib olması qanununu müəyyən etmişdir.

XVIII əsrin axırlarında sənayenin,maşınqayırmanın,dəmir yolları çəkilişinin sürətli inkişafı möhkəmliyə aid elmlərin inkişafına səbəb oldu.

Bu sahədə alimlərdən M.V.Lomonosov (1711-1765),Leonard Eyler (1707-1783),D.İ.Juravski (1821-1891),F.S.Yasinski (1856-1899),V.L.Kirpiçyev (1845-1891).A.V.Qadolin (1828-1892).N.E.Jukovski (1847-1921),S.P.Timoşenko(1848-1972) və b. böyük işlər görmüşlər.

Möhkəmlik elmlərinin inkişafında A.A.İlyuşin,V.V.Sokolovski,L.A.Qalinin,A.F.Smirnov,

Y.Ə.Əmənzadə,İ.A.Bəxtiyarov,M.Y.Axundzadə,V.M.Mirsəlimov,Ə.İ.İsayev və başqalarının

əməyi böyükdür.



III. Materiallar müqavimətində öyrənilən cisimlər.

Xarici yüklərin təsiri altında qurğu hissələrində baş verən hadisələr,bu hissələrin həndəsi formasından asılıdır.Qurğu hissələri həndəsi formalarına görə bir neçə qrupa bölünür:

1.Ölçülərindən biri(uzunluğu) iki ölçüsünə (eni və qalınlığına) nisbətən bö-

yük olan cisimlərə brus və ya mil deyilir(şəkil 1.1)

Şəkil 1.1


2.İki ölçüsü (uzunluğu və eni) üçüncü ölçüsünə(qalınlığına) nisbətən böyük olan müstəvi paralel səthli cismə tava deyilir.Qalınlığı çox kiçik olan tavaya lövhə deyilir.İki ölçüsü üçüncü ölçüsünə nisbətən böyük olan əyri səthli cisim qabıq adlanır.

3.Hər üç ölçüsü eyni tərtibli-kürə,sütunların özülü və s. cisimlər massiv adlanır.

4.Hər üç ölçüsü müxtəlif tərtibli cismə nazikdivarlı mil deyilir.

IV. Materiallar müqavimətində fərziyyələr.

Materiallar müqavimətində aşağıdakı fərziyyələr qəbul edilir:

1.Materialların bircinsliliyi və kəsilməzliyi fərziyyəsi.

Aparılan nəzəri tədqiqatlarda cisimlərin bircinsli olub,xassələrinin onun forma və ölçülərindən asılı olmadığı nəzərdə tutulur.

2.Materialların izotropluğu fərziyyəsi.

Fərz edilir ki,real cisimləri əmələ gətirən hissəciklərin bütün istiqamətlərdə fiziki-mexaniki xassələri eynidir.

3.Materialların elastikliyi fərziyyəsi.

Xarici qüvvələrin təsiri altında olan bütün real cisimlər müəyyən dərəcədə öz ölçü və formasını dəyişir,yəni deformasiyaya uğrayır.Deformasiyaya uğramış cismin,xarici qüvbvələr kənar edildikdə öz əvvəlki vəziyyətini alması xassəsinə elastiklik deyilir.

4.Deformasiyaların kişik olması fərziyyəsi.

Elastik deformasiyalar həddi daxilində cismin forma və ölçüləri çox cüzi dəyişir.


V. Deformasiyalar və yerdəyişmələr.

Real cismə müvazinətdə qalan xarici qüvvələr sistemi tətbiq edildikdə o,öz forma və ölçülərini dəyişir.



Xarici qüvvələrin təsiri nəticəsində cismin həndəsi forma və ölçülərini dəyişməsinə deformasiya deyilir.

Cismin deformasyası ona təsir edən qüvvələrdən və cismin materialının fiziki xassəsindən asılıdır.

Xarici qüvvələrin təsirindən bərk cisim öz həndəsi formasını dəyişir.

Cismin nöqtəsi isə fəzada yerdəyişmə edir. vektoru A başlanğıc nöqtəsində deformasiya vəziyyətində olmur. son nöqtədə isə deformasiya vəziyyətində olur.Bu vəziyyətə vektorun tam yerdəyişməsi deyilir.(Şəkil 1.2).Onun xyz oxu üzrə proyeksiyası ox yerdəyişməsi adlanır və u,v və w ilə işarə edilir.Cismin forma və ölçüsünün intensiv dəyişməsini xarakterizə etmək üçün, A və B nöqtələrinin deformasiya olunmayan vəziyyətinə baxaq.Həmin nöqtələr arasındakı məsafə S bərabərdir.





Şəkil 1.2


İki müxtəlif materialdan hazırlanmış forma və ölçüləri eyni olan cisimlərin eyni qüvvənin təsiri altında deformasyaları müxtəlif olur.Məsələn,rezindən hazırlanmış brus polad brusa nəzərən daha çox uzanır.

Cismin formasının dəyişməsi nəticəsində həmin nöqtələr А?В? bəziyyətinə gəlir.

Onlar arasında məsafə artımı ?S-dir.Həmin artım A nцqtəsinin AB istiqamətində xətti deformasiyası adlanır.

(1.1)

Xyz koordinat oxları istiqaməti ьzrə deformasiyaya baxsaq,xətti deformasiyanın proyeksiyaları ?x , ?y , ?z ilə işarə olunar.

?x , ?y , ?z xətti deformasiya deformasiya prosesində cismin həcmi dəyişməsini xarakterizə edir.Cismin forma dəyişməsi isə bucaq deformasiyası adlanır.Onları təyin etmək ьзьn dьz bucağa baxaq.Həmin bucaq deformasiya olunmayan vəziyyətdə OD və OC parзalarından yaranır.(Şəkil 1.2 b).Xarici qьvvələrin təsirindən DOC bucağı dəyişir və yeni D?O?C? qiyməti alır.Artım bucaq deformasiyası adlanır.



(? DOC ? ? D?O?C?) = ? (1.2)

Nisbi koordinat oxlarının sьrьşmə deformasiyası ?xy , ?xz , ?yz işarə olunur.Cismin,ona təsir edən qьvvə gцtьrьldьkdə,цz əvvəlki formasını bərpaetməsi qabiliyyəti elastiklik adlanır.



Xarici qüvvə götürüldükdə yox olan deformasiyaya elastik deformasiya deyilir.

Xarici qüvvə götürüldükdə cisimdə qalan deformasiyaya qalıq və ya plastik deformasiya deyilir.

Cismin həcmi üzrə yayılmış deformasiyaya ümumi deformasiya deyilir.

Həcmin müəyyən hissəsində əmələ gələn deformasiyaya yerli deformasiya

deyilir.

VI. Xarici qüvvələr.

Topa qüvvənin tətbiq olunmasına misal olaraq qatarın ağırlığının onun təkəri vasitəsilə dəmir yolu relsinə ötürülməsini göstərmək olar.

Bəzən səthi və həcmi qüvvələr istiqamətlənmiş xarakterə malik olur.Məsələn,bir cismin başqa bir cismə olan təzyiqinə xarici qüvvə və ya yük deyilir.

Cismin səthinə tətbiq edilmiş qüvvəyə səthi qüvvə,həcmi üzrə bütün nöqtələrinə tətbiq edilən qüvvələrə isə həcmi və ya kütləvi qüvvələr deyilir.

Səthi qüvvələrə misal olaraq,mərtəbələrarası örtük tirlərinə örtüyün,örtük üzərində yerləşən əşyaların təzyiqini və tirin dayaqlarında alınan reaksiya qüvvələrini göstərmək olar.Cismin öz çəkisini,ətalət qüvvələrini,fırlanan cisimlərdə əmələ gələn mərkəzdənqaçma qüvvələrini həcmi qüvvələrə misal göstərmək olar.



Cismə,bu cismin öz ölçülərinə nisbətən çox kiçik sahəsinə tətbiq olunan səthi qüvvəyə topa qüvvə deyilir.

Yer səthinin relslər üzərində hərəkət edən qatarla yüklənməsi.Bu halda belə qüvvələrə uzununa paylanan qüvvələr deyilir.Uzununa paylanan intensivlik adlanan səpələnmiş yükün intensivliyi aşağıdakı düsturla təyin edilir:



= (1.3)

Burada - uzunluğu olan sahəyə təsir edən uzununa ölçülən qüvvələrin əvəzləyicisidir.



Cismin öz ağırlığı kimi vaxtdan asılı olmayaraq dəyişməyən yükə sabit yük deyilir.

Qatarın körpüyə olan təsiri,qarın,küləyin təzyiqi kimi müəyyən vaxtlarda təsir edən yüklərə müvəqqəti yük deyilir.Sıfırdan başlayaraq öz son qiymətini alıncaya qədər tədricən artan xarici yükə statik yük,qısa vaxt ərzində öz qiymət və ya vəziyyətini dəyişən yükə dinamik yük deyilir.

VII. Daxili qüvvələr.

Deformasiya zamanı cismin elementar hissəcikləri arasında təsir edən qarşılıqlı qüvvələrin fərqinə daxili qüvvə deyilir.Daxili qüvvələri aşkara çıxarmaq və xarici qüvvələrlə riyazi olaraq əlaqələndirmək üçün “kəsmək” üsulundan istifadə edilir.

Kəsmək üsulunun mahiyyəti aşağıdakılardan ibarətdir:

1.Cisim daxili qüvvələr axtarılan kəsik üzrə xəyalən kəsilərək iki hissəyə bölünür.

2.Hissələrdən biri nəzərdən atılır.

3.Nəzərdən atılan hissənin saxlanılan hissəyə olan təsiri saxlanılan hissənin kəsiyi üzərindəki nöqtələrə tətbiq edilmiş elementar daxili qüvvələr sistemi ilə əvəz edilir.

4.Saxlanılan hissənin həqiqətdə müvazinətdə qalması şərtinə əsasən daxili qüvvələr xarici qüvvələrlə əlaqələndirilir.

Brus formalı cismə baxaq.(Şəkil 1.3)


Şəkil 1.3

Brusa ,,,....xarici qüvvələr təsir edir.Bu qüvvələrin təsirindən o müvazinətdədir.Əgər brusu A kəsiyindən iki hissəyə bölsək,sağ hissəni nəzərdən atsaq,cağ hissənin təsirini sol hissədə A kəsiyində təsir edən daxili qüvvələr sistemi ilə əvəz edə bilərik(şəkil 1.3 b).

Xarici qüvvələrin cəmini ilə işarə etsək,alarıq:



(1.4)

Brusun kəsilən hissəsi üçün alırıq.



; (1.5)

Nəzəri mexanikanın qanunları əsasında daxili qüvvələr sistemini A kəsiyinin ağırlıq mərkəzinə gətirək.Nəticədə baş qüvvə vektoru və baş moment vektoru alırıq.(Şəkil 1.4).R və M,brusun x oxuvə kəsiyin mərkəzi y,z baş oxları üzərindəki proyeksiyaları N,,,, ilə işarə edilir.

Brusun en kəsiyinə perpendikulyar N qüvvəsi normal qüvvə,kəsiyə paralel , qüvvələri eninə və ya kəsici qüvvə adlanır.

Brusun en kəsiyi müstəvisi üzərində təsir edən momenti burucu, xy və xz müstəviləri üzərində təsir edən momentlərə əyici moment deyilir.Daxili qüvvələrin komponentlərinin qiymət və istiqamətləri,brusun kəsikdən bir tərəfdə qalan hissəsinin müvazinətdə qalması şərtinə əsasən qurulan altı müvazinət tənliyi vasitəsi ilə tapılır:



= 0, =0,=0,=0,=0,=0 VIII.Gərginlik.

Cismin möhkəmliyi onun kəsiklərində əmələ gələn daxili qüvvələrin intensivliyi ilə xarakterizə olunur.Hər bir kəsikdə əmələ gələn daxili qüvvələrin intensivliyi həmin kəsik üzərindəki nöqtələrdə alınan gərginliklərlə ölçülür.Kəsiyin üzərində götürülmüş nöqtə ətrafında vahid sahəyə düşən daxili qüvvəyə kəsiyinhəmin nöqtədəki gərginliyi deyilir.

Fərz edək ki.xarici və daxili qüvvələrin təsiri altında müvazinətdə qalan cismin kəsiyi üzərindəki K nöqtəsində əmələ gələn gərginliyi tapmaq lazımdır(Şəkil 1.4).

Məsələni həll etmək üçün K nöqtəsi ətrafında kiçik F sahəsi ayırırıq.Bu sahəyə təsir edən daxili qüvvələrin əvəzləyicisini,yəni R həmin sahəyə bölməklə K nöqtəsində təsir edən daxili qüvvənin orta qiymətini təyin edirik:


(1.6)

Şəkil  1.4


- Orta hesabla F hissəsində vahid sahəyə düşən daxili qüvvəsinə,kəsiyin K nöqtəsində əmələ gələn orta tam gərginliyi deyilir.

F sahəsini tədricən kiçiltməklə müvafiq olaraq R qüvvəsi də azalacaqdır.F sahəsi sıfra yaxınlaşdıqda orta tam gərginliyin qiyməti K nöqtəsinin

həqiqi gərginliyinə bərabər olur:

P = () (1.7)
Burada P gərginliyi kəsiyin üzərindəki K nöqtəsinin həqiqi tam gərginliyidir.

qüvvəsini,biri sahəsinə perpendikulyar ,o biri həmin sahəyə paralel

toplananlarına ayırmaqla,yəni

( = (N + ( (1.8)


tədqiq etdiyimiz kəsiyin K nöqtəsi ətrafındakı sahəsində əmələ gələn normal və toxunan qüvvələrin intensivliyini,yəni normal və toxunan gərginlikləri təyin etmək olar:

() = (1.9)
() = (1.10)
Burada - tədqiq etdiyimiz kəsiyin K nöqtəsində əmələ gələn normal gərginlik, isə həmin nöqtədə əmələ gələn toxunan gərginlikdir.Gərginliyin ölçüsü N/olur.Kəsikdə əmələ gələn normal və toxunan gərginliklər həmin kəsiyə təsir edən daxili qüvvələrin komponentlərindən asılıdır.Gərginlikləri daxili qüvvələrin komponentləri ilə əlaqələndirmək üçün brusun en kəsiyindən sonsuz kiçik dF sahəsi götürülür.dF sahəsinə təsir edən dR elementar daxili qüvvə kəsiyin normalı ox və oy,oz mərkəzi baş oxları istiqamətində toplananlarına(dF,dF,dF)

ayrılır.Kəsiyin səthi üzrə təsir edən sonsuz miqdarda bu elementar qüvvələrin ox,oy və oz oxları üzərindəki proyeksiyaları və həmin oxlara nəzərən momentlərinin cəbri cəmləri uyğun olaraq daxili qüvvələrin konponentlərini verir:


N = dF, = dF, = dF,
= y - z)dF, = zdF, = ydF.


IX. Deformasiyaların növləri

Eninə əyilmə müstəsna olmaq şərti ilə,kəsiklərində daxili qüvvənin bir komponenti alınan hallara uyğun deformasiyaya sadə deformasiya deyilir.

Beş növ sadə deformasiya mövcuddur:

1.Dartılma,2.Sıxılmma,3.Sürüşmə(Kəsilmə),4.Burulma,5.Xalis əyilmə.

En kəsiklərində yalnız normal qüvvə alınan brusun deformasiyasına dartılma və ya sıxılma deyilir. Dartılma və sıxılmaya misal olaraq fermaların millərində alinan deformasiyanı göstərmək olar.

Xarici qüvvələrin təsiri nəticəsində en kəsiklərində yalmız kəsici qüvvə alınan cisimlərdə əmələ gələn deformasiyaya sürüşmə və ya kəsilmə deyilir.Sürüşməyə misal olaraq,pərçimlərdə və boltlarda alınan deformasiyanı göstərmək olar.

Xarici qüvvələrin təsiri nəticəsində brusun en kəsiklərində yalnız burucu moment alınan hallara uyğun deformasiya burulma adlanır.

En kəsiklərində yalnız əyici moment alınan brusun deformasiyası xalis əyilmə adlanır.Xarici qüvvələrin təsiri altında en kəsiklərində həm əyici moment,həm də kəsici qüvvə alınan hala uyğun deformasiyaya eninə əyilmə deyilir.

Qurğu hissələrində bəzən eyni zamanda bir neçə sadə deformasiya yaranır.Məsələn,brus həm dartılır,həm də əyilir və ya əyilir və eyni zamanda burulur.Belə hala uyğun deformasiyaya mürəkkəb deformasiya deyilir.


AZƏRBAYCAN DÖVLƏT AQRAR UNİVERSİTETİ


AQROTEXNOLOGİYA FAKULTƏSİ


MEMARLIQ VƏ TEXNİKİ QRAFİKA KAFEDRASI


MÜHAZİRƏÇİ : DOSENT MƏMMƏDOV VİLAYƏT İSRAFİL


MÖVZU:

DARTILMA VƏ SIXILMA.
PLAN:

1.Daxili qüvvə və gərginlik.

2.Dartılmada deformasiyalar.Huk qanunu

3.Eninə deformasiya.Puasson əmsalı.

4.Hissələri dəqiq hazırlanmayan komstruksiyalarda alınan quraşdırma gərginlikləri.

5.Temperaturun dəyişməsi nəticəsində alınan gərginliklər.

6.Brusun çəkisinin nəzərə alınması.

ƏDƏBİYYAT:

1.H.Süleymanov.Materiallar müqaviməti.Maarif nəşriyyatı,Bakı,1971.

2. Ə.Bayramov.Sərbəst iş üçün praktiki materiallar müqaviməti kursu.Maarif nəşriyyatı,

Bakı,1998.

3. V.Feodosev.Materiallar müqaviməti.Maarif nəşriyyatı,Bakı,1963.

GƏNCƏ- 2010

I. Daxili qüvvə və gərginlik.

Dartılma(sıxılma) dedikdə brusun en kəsiyində yalnız normal qüvvə yaranır.

Uzunluğu olan düzxətli brusa baxaq.En kəsik sahəsi F-dir.Brusun hər iki sonuna istiqamətcə bir birinə əks olan, qiymətcə bərabər iki P mərkəzi boyuna qüvvə təsir edir.(Şəkil 2.1).Sol kəsiyin ağırlıq mərkəzində yz müstəvi koordinat sistemini yerləşdirək.z oxunu isə brusun oxu boyu istiqamətləndirək.Daxili qüvvələri təyin etmək üçün kəsmə üsulundan istifadə edək.Sol tərəfin müvazinət şərtindən təyin edirik:

P + Nz = 0,

Nz = P = const.

işarə qaydasını qəbul edək.Kəsiyin xarici normalı istiqamətində təsir edən nopmal qüvvənin işarəsi müsbət, istiqaməti xarici normalın istiqamətinə əks olan normal qüvvə isə mənfi qəbul edilir.


Şəkil 2.1

Kəsiyin ağırlıq mərkəzinə tətbiq olunan,daxili qüvvələrin əvəzləyicisi olan normal qüvvəni hesablayaq:

.

  1   2   3


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azrefs.org 2016
rəhbərliyinə müraciət

    Ana səhifə